Всестороннее развитие ребенка в процессе фэмп
Возможности всестороннего развития ребенка в процессе ФЭМП
I. Сенсорное развитие (ощущение и восприятие) Источником элементарных математических представлений является окружающая реальная действительность, которую ребенок познает в процессе разнообразной деятельности, в общении со взрослыми и под их обучающим руководством.
В основе по-знания маленькими детьми качественных и количественных признаков предметов и явлений лежат сенсорные процессы (движение глаз, прослеживающих форму и размер предмета, ощупывание руками и др.). В процессе разнообразной перцептивной и продуктивной деятельности у детей начинают формироваться представления об окружающем их мире: о различных признаках и свойствах предметов — цвете, форме, величине, их пространственном расположении, количестве. Постепенно накапливается сенсорный опыт, который является чувственной основой для математического развития. При формировании элементарных математических представлений у дошкольника мы опираемся на различные анализаторы (тактильный, зрительный, слуховой, кинестетический) и одновременно развиваем их. Развитие восприятия идет путем совершенствования перцептивных действий (рассматривание, ощупывание, выслушивание и пр.) и усвоения систем сенсорных эталонов, выработанных человечеством (геометрические фигуры, меры величин и др.).
II. Развитие мышления Обсуждение
Назовите виды мышления.
Как в работе воспитателя по ФЭМП учитывается уровень
развития мышления ребенка?
Какие логические операции вы знаете?
Приведите примеры математических заданий для каждой
логической операции.
Мышление — процесс сознательного отражения действительности в представлениях и суждениях.
В процессе формирования элементарных математических представлений у детей развиваются все виды мышления:
наглядно-действенное;
наглядно-образное;
словесно-логическое.
Логические операции
Примеры заданий дошкольникам
Анализ (разложение целого на составные части)
— Из каких геометрических фигур составлена машина?
Синтез (познание целого в единстве и взаимосвязи его частей)
— Составь дом из геометрических фигур
Логические операции
Примеры заданий дошкольникам
Сравнение (сопоставление для установления сходства и различия)
— Чем похожи эти предметы? (формой) — Чем отличаются эти предметы? (размером)
Конкретизация (уточнение)
— Что ты знаешь о треугольнике?
Обобщение (выражение основных результатов в общем положении)
— Как можно одним словом назвать квадрат, прямоугольник и ромб?
Систематизация (расположение в определенном порядке)
Поставь матрешки по росту
Классификация (распределение объектов по группам в зависимости от их общих признаков)
— Разложи фигуры на две группы. — По какому признаку ты это сделал?
Абстрагирование (отвлечение от ряда свойств и отношений)
— Покажи предметы круглой формы
III. Развитие памяти, внимания, воображения Обсуждение
Что включает понятие «память» ?
Предложите детям математическое задание на развитие памяти.
Как активизировать внимание детей при формировании элементарных математических представлений?
Сформулируйте задание детям на развитие воображения, используя математические понятия.
Память включает в себя запоминание («Запомни — это квадрат»), припоминание («Как называется эта фигура?»), воспроизведение («Нарисуй круг!»), узнавание («Найди и назови знакомые фигуры!»).
Внимание не выступает как самостоятельный процесс. Его результатом является улучшение всякой деятельности. Для активизации внимания решающее значение имеет умение поставить задание и мотивировать его. («У Кати одно яблоко. К ней пришла Маша, надо разделить яблоко поровну между двумя девочками. Внимательно посмотрите, как я это буду делать!»).
Образы воображения формируются в результате мысленного конструирования объектов («Представьте фигуру с пятью углами»).
IV. Развитие речи
Обсуждение
Как в процессе формирования элементарных математических представлений развивается речь ребенка?
Что дает математическое развитие для развития речи ребенка ?
Математические занятия оказывают огромное положительное влияние на развитие речи ребенка:
обогащение словаря (числительные, пространственные
предлоги и наречия, математические термины, характеризующие форму, величину и др.);согласование слов в единственном и множественном числе («один зайчик, два зайчика, пять зайчиков»);
формулировка ответов полным предложением;
логические рассуждения.
Формулировка мысли в слове приводит к лучшему пониманию: формулируясь, мысль формируется.
V. Развитие специальных навыков и умений
Обсуждение
— Какие специальные навыки и умения формируются у дошкольников в процессе формирования математических представлений?
На математических занятиях у детей формируются специальные навыки и умения, необходимые им в жизни и учебе: счет, вычисление, измерение и др.
1 VI. Развитие познавательных интересов Обсуждение
Каково значение наличия у ребенка познавательного интереса к математике для его математического развития?
Каковы пути возбуждения познавательного интереса к математике у дошкольников?
Как можно возбудить познавательный интерес к занятиям по ФЭМП в ДОУ?
Что является предпосылкой возникновения интереса к занятию математикой у детей?
Значение познавательного интереса:
активизирует восприятие и мыслительную деятельность;
расширяет кругозор;
способствует умственному развитию;
повышает качество и глубину знаний;
способствует успешному применению знаний на практике;
побуждает самостоятельно приобретать новые знания;
меняет характер деятельности и связанные с ней переживания (деятельность становится активной, самостоятельной, разносторонней, творческой, радостной, результативной);
оказывает положительное влияние на формирование личности;
оказывает положительное действие на здоровье ребенка (возбуждает энергию, повышает жизненный тонус, делает жизнь более счастливой);
Пути возбуждения интереса к математике:
связь новых знаний с детским опытом;
открытие новых сторон в прежнем опыте детей;
игровая деятельность;
словесное возбуждение;
стимуляция.
Психологические предпосылки интереса к математике:
• создание положительного эмоционального отношения к педагогу;
• создание положительного отношения к занятиям.
Пути возбуждения познавательного интереса к занятию по ФЭМП:
объяснение смысла выполняемой работы («Кукле негде спать. Давайте построим для нее кровать! Каких размеров она должна быть? Давайте померяем!»);
работа с любимыми привлекательными объектами (игрушками, сказками, картинками и др.);
связь с близкой детям ситуацией («У Миши день рождения. Когда у вас день рожденья, кто к вам приходит?
К Мише тоже пришли гости. Сколько чашек надо поставить на стол для праздника?»);интересная для детей деятельность (игра, рисование, конструирование, аппликация и др.);
посильные задания и помощь в преодолении трудностей (ребенок должен в конце каждого занятия испытать удовлетворение от преодоления трудностей)’, положительное отношение к деятельности детей (заинтересованность, внимание к каждому ответу ребенка, доброжелательность); побуждение инициативы и др.
Принципы обучения математике
Сознательность и активность.
Наглядность.
Деятельностный подход.
Систематичность и последовательность.
Прочность.
Постоянная повторяемость.
Научность.
Доступность.
Связь с жизнью.
Развивающее обучение.
Индивидуальный и дифференцированный подход.
Коррекционная направленность и др.
Методы ФЭМП. Методы организации и осуществления учебно-познавательной деятельности
1. Перцептивный аспект (методы, обеспечивающие передачу учебной информации педагогом и восприятие ее детьми посредством слушания, наблюдения, практических действий):
а) словесный (объяснение, беседа, инструкция, вопросы и др.);
б) наглядный (демонстрация, иллюстрация, рассматривание и др.);
в) практический (предметно-практические и умственные действия, дидактические игры и упражнения и др.).
2. Гностический аспект (методы, характеризующие усвоение нового материала детьми, — путем активного запоминания, путем самостоятельных размышлений или проблемной ситуации):
а) иллюстративно-объяснительный;
б) проблемный;
в) эвристический;
г) исследовательский и др.
3. Логический аспект (методы, характеризующие мыслительные операции при подаче и усвоении учебного материала):
а) индуктивный (от частного к общему);
б) дедуктивный (от общего к частному).
4. Управленческий аспект (методы, характеризующие степень самостоятельности учебно-познавательной деятельности детей):
а) работа под руководством педагога,
б) самостоятельная работа детей.
Особенности практического метода:
выполнение разнообразных предметно-практических и умственных действий;
широкое использование дидактического материала;
возникновение математических представлений в результате действия с дидактическим материалом;
выработка специальных математических навыков (счета, измерения, вычислений и др.);
использование математических представлений в быту, игре, труде и др.
Особенности наглядного метода
Виды наглядного материала:
демонстрационный и раздаточный;
сюжетный и бессюжетный;
объемный и плоскостной;
специально-счетный (счетные палочки, абак, счеты и др.);
фабричный и самодельный.
Методические требования к применению наглядного материала:
• новую программную задачу лучше начинать с сюжетного объемного материала;
по мере усвоения учебного материала переходить к сюжетно-плоскостной и бессюжетной наглядности;
одна программная задача объясняется на большом разнообразии наглядного материала;
новый наглядный материал лучше показать детям заранее…
Требования к самодельному наглядному материалу:
гигиеничность (краски покрываются лаком или пленкой, бархатная бумага используется только для демонстрационного материала);
эстетичность;
реальность;
разнообразие;
однородность;
прочность;
логическая связанность (заяц — морковь, белка — шишка и т. п.);
достаточное количество…
Особенности словесного метода
Вся работа построена на диалоге воспитатель — ребенок.
Требования к речи воспитателя:
эмоциональная;
грамотная;
доступная;
четкая;
достаточно громкая;
приветливая;
в младших группах тон загадочный, сказочный, таинственный, темп небыстрый, многократные повторения;
в старших группах тон заинтересовывающий, с использованием проблемных ситуаций, темп достаточно быстрый, приближающийся к ведению урока в школе…
Требования к речи детей:
грамотная;
понятная (если у ребенка плохое произношение, воспитатель проговаривает ответ и просит повторить); полными предложениями;
с нужными математическими терминами;
достаточно громкая…
Приемы ФЭМП
Демонстрация (обычно используется при сообщении новых знаний).
Инструкция (используется при подготовке к самостоятельной работе).
Пояснение, указание, разъяснение (используются для предотвращения, выявления и устранения ошибок).
Вопросы к детям.
Словесные отчеты детей.
Предметно-практические и умственные действия.
Контроль и оценка.
Требования к вопросам воспитателя:
точность, конкретность, лаконизм;
логическая последовательность;
разнообразие формулировок;
небольшое, но достаточное количество;
избегать подсказывающих вопросов;
умело пользоваться дополнительными вопросами;
давать детям время на обдумывание…
Требования к ответам детей:
краткие или полные в зависимости от характера вопроса;
на поставленный вопрос;
самостоятельные и осознанные;
точные, ясные;
достаточно громкие;
грамматически правильные…
Что делать, если ребенок отвечает неправильно?
(В младших группах необходимо исправить, попросить повторить правильный ответ и похвалить. В старших — можно сделать замечание, вызвать другого и похвалить правильно ответившего.)
Формыработыпоматематическомуразвитию дошкольников
Форма
Задачи
время
Охват детей
Ведущая роль
Занятие
Дать, повторить, закрепить и систематизировать знания, умения и навыки
Планомерно, регулярно, систематично (длительность и регулярность в соответствии с программой)
Группа или подгруппа (в зависимости от возраста и проблем в развитии)
Воспитатель (или дефек-толог)
Дидактическая игра
Закрепить, применить, расширить ЗУН
На занятии или вне занятий
Группа, подгруппа, один ребенок
Воспитатель и дети
Индивидуальная работа
Уточнить ЗУН и устранить пробелы
На занятии и вне занятий
Один ребенок
Воспитатель
Досуг (математический утренник, праздник, викторина и т. п.)
Увлечь математикой, подвести итоги
1—2 раза в году
Группа или несколько групп
Воспитатель и другие специалисты
Самостоятельная деятельность
Повторить, применить, отработать ЗУН
Во время режимных процессов, бытовых ситуаций, повседневной деятельности
Группа, подгруппа, один ребенок
Дети и воспитатель
Источник
ЛЕКЦИЯ 2
ТЕМА: «Возможности всестороннего развития ребенка в процессе формирования элементарных математических представлений»
Цель:
Показать возможность развития у детей мышления, памяти, внимания, воображения, речи, познавательных интересов в процессе формирования ФЭМП.
I. Сенсорное развитие (ощущение и восприятие). Источником элементарных математических представлений является окружающая реальная действительность, которую ребенок познает в процессе разнообразной деятельности, в общении со взрослыми и под их обучающим руководством.
В основе познания маленькими детьми качественных и количественных признаков предметов и явлений лежат сенсорные процессы (движение глаз, прослеживающих форму и размер предмета, ощупывание руками и др.). В процессе разнообразной перцептивной и продуктивной деятельности у детей начинают формироваться представления об окружающем их мире: о различных признаках и свойствах предметов — цвете, форме, величине, их пространственном расположении, количестве. Постепенно накапливается сенсорный опыт, который является чувственной основой для математического развития. При формировании элементарных математических представлений у дошкольника мы опираемся на различные анализаторы (тактильный, зрительный, слуховой, кинестетический) и одновременно развиваем их. Развитие восприятия идет путем совершенствования перцептивных действий (рассматривание, ощупывание, выслушивание и пр.) и усвоения систем сенсорных эталонов, выработанных человечеством (геометрические фигуры, меры величин и др.).
II. Развитие мышления.
Обсуждение:
— Назовите виды мышления.
— Как в работе воспитателя по ФЭМП учитывается уровень
развития мышления ребенка?
— Какие логические операции вы знаете?
— Приведите примеры математических заданий для каждой
логической операции.
Мышление — процесс сознательного отражения действительности в представлениях и суждениях.
В процессе формирования элементарных математических представлений у детей развиваются все виды мышления:
• наглядно-действенное;
• наглядно-образное;
• словесно-логическое.
Логические операции. Примеры заданий дошкольникам
Анализ (разложение целого на составные части)
— Из каких геометрических фигур составлена машина?
Синтез (познание целого в единстве и взаимосвязи его частей)
— Составь дом из геометрических фигур
Сравнение (сопоставление для установления сходства и различия)
— Чем похожи эти предметы? (формой)
— Чем отличаются эти предметы? (размером)
Конкретизация (уточнение)
— Что ты знаешь о треугольнике?
Обобщение (выражение основных результатов в общем положении)
— Как можно одним словом назвать квадрат, прямоугольник и ромб?
Систематизация (расположение в определенном порядке)
— Поставь матрешки по росту
Классификация (распределение объектов по группам в зависимости от их общих признаков)
— Разложи фигуры на две группы.
— По какому признаку ты это сделал?
Абстрагирование (отвлечение от ряда свойств и отношений)
— Покажи предметы круглой формы
III. Развитие памяти, внимания, воображения.
Обсуждение:
— Что включает понятие «память» ?
— Предложите детям математическое задание на развитие памяти.
— Как активизировать внимание детей при формировании эле¬
ментарных математических представлений?
— Сформулируйте задание детям на развитие воображения, используя математические понятия.
Память включает в себя запоминание («Запомни — это квадрат»), припоминание («Как называется эта фигура?»), воспроизведение («Нарисуй круг!»), узнавание («Найди и назови знакомые фигуры!»).
Внимание не выступает как самостоятельный процесс. Его результатом является улучшение всякой деятельности. Для активизации внимания решающее значение имеет умение поставить задание и мотивировать его.
(«У Кати одно яблоко. К ней пришла Маша, надо разделить яблоко поровну между двумя девочками. Внимательно посмотрите, как я это буду делать!»).
Образы воображения формируются в результате мысленного конструирования объектов («Представьте фигуру с пятью углами»).
IV. Развитие речи
Обсуждение:
— Как в процессе формирования элементарных математических представлений развивается речь ребенка?
— Что дает математическое развитие для развития речи ребенка?
Математические занятия оказывают огромное положительное влияние на развитие речи ребенка:
• обогащение словаря (числительные, пространственные
предлоги и наречия, математические термины, характеризующие форму, величину и др.);
• согласование слов в единственном и множественном числе («один зайчик, два зайчика, пять зайчиков»);
• формулировка ответов полным предложением;
• логические рассуждения.
Формулировка мысли в слове приводит к лучшему пониманию: формулируясь, мысль формируется.
V. Развитие специальных навыков и умений
Обсуждение:
— Какие специальные навыки и умения формируются у дошкольников в процессе формирования математических представлений?
На математических занятиях у детей формируются специальные навыки и умения, необходимые им в жизни и учебе: счет, вычисление, измерение и др.
VI. Развитие познавательных интересов.
Обсуждение:
— Каково значение наличия у ребенка познавательного интереса к математике для его математического развития?
— Каковы пути возбуждения познавательного интереса к математике у дошкольников?
— Как можно возбудить познавательный интерес к занятиям по ФЭМП в ДОУ?
— Что является предпосылкой возникновения интереса к занятию математикой у детей?
Значение познавательного интереса:
• активизирует восприятие и мыслительную деятельность;
• расширяет кругозор;
• способствует умственному развитию;
• повышает качество и глубину знаний;
• способствует успешному применению знаний на практике;
• побуждает самостоятельно приобретать новые знания;
• меняет характер деятельности и связанные с ней переживания (деятельность становится активной, самостоятельной, разносторонней, творческой, радостной, результативной);
• оказывает положительное влияние на формирование личности;
• оказывает положительное действие на здоровье ребенка (возбуждает энергию, повышает жизненный тонус, делает жизнь более счастливой);
Пути возбуждения интереса к математике:
• связь новых знаний с детским опытом;
• открытие новых сторон в прежнем опыте детей;
• игровая деятельность;
• словесное возбуждение;
• стимуляция.
Психологические предпосылки интереса к математике:
• создание положительного эмоционального отношения к педагогу;
• создание положительного отношения к занятиям.
Пути возбуждения познавательного интереса к занятию по ФЭМП:
• объяснение смысла выполняемой работы («Кукле негде спать.Давайте построим для нее кровать! Каких размеров она должна быть? Давайте померяем!»);
• работа с любимыми привлекательными объектами (игрушками, сказками, картинками и др.);
• связь с близкой детям ситуацией («У Миши день рождения. Когда у вас день рожденья, кто к вам приходит?
К Мише тоже пришли гости. Сколько чашек надо поставить на стол для праздника?»);
• интересная для детей деятельность (игра, рисование, конструирование, аппликация и др.);
• посильные задания и помощь в преодолении трудностей (ребенок должен в конце каждого занятия испытать удовлетворение от преодоления трудностей)’, положительное отношение к деятельности детей (заинтересованность, внимание к каждому ответу ребенка, доброжелательность); побуждение инициативы и др.
Принципы обучения математике:
• Сознательность и активность.
• Наглядность.
• Деятельностный подход.
• Систематичность и последовательность.
• Прочность.
• Постоянная повторяемость.
• Научность.
• Доступность.
• Связь с жизнью.
• Развивающее обучение.
• Индивидуальный и дифференцированный подход.
• Коррекционная направленность и др.
Источник