Математическое развитие ребенка по венгер это
Понятие, история, проблемы математического развития дошкольников
Основоположники системы дошкольного образования, математического образования дошкольников Я.А.Каменский и И.Г.Песталоцци считают, что основы арифметики можно заложить только на третьем году, когда дети начнут считать до пяти, а впоследствии до десяти или, по крайней мере, начнут ясно выговаривать эти числа. Если на четвёртом, на пятом, на шестом году они научатся считать по порядку до двадцати и быстро различать что 7 больше 5, 15 меньше 30, то этого будет достаточно. Основы геометрии они будут в состоянии усвоить на втором году, различая, что мы называем большим и что малым, впоследствии они легко поймут, что такое короткое, длинное, широкое, узкое. На четвёртом году они поймут различия некоторых фигур. Если что-либо станет им более известным, само собою они сами попытаются измерить, взвешивать и сопоставлять одно с другим.
И.Г.Песталоцци в книге «Как Гертруда учит своих детей», говорит о том, что арифметика- это искусство, целиком возникающее из простого соединения и разъединения нескольких единиц. Его первоначальная форма, по существу, следующая: один да один- два, от двух отнять один — остаётся один. Таким образом, первоначальная форма всякого счёта глубоко запечатлевается детьми, и для них становятся привычными с полным сознанием их внутренней правды средства, служащие для сохранения счёта, то есть числа. Было бы хуже, писал Песталоцци, если бы дети сделали успехи в применении их, не имея перед глазами оснований для наблюдения. Независимо от того преимущества, что благодаря этому вычисление можно сделать основанием для чётких понятий, невероятно, до чего облегчается это искусство даже для детей, благодаря такому верному применению наглядности: опыт показывает, что начало бывает трудным потому, что это психологически необходимое правило используется не в полном объёме, как полагалось бы.
В педагогических сочинениях отца русской дидактики К.Д.Ушинского говорится, что прежде всего следует выучить детей считать до десяти на наглядных предметах: на пальцах, орехах, и т.д., которые не жаль было бы и разломать, если придется показать наглядно половину, треть, и т.д. Считать следует учить назад и вперёд так, чтобы дети с одинаковой лёгкостью считали от единицы до десяти и от десяти до единицы. Потом следует научить считать их парами, тройками, пятёрками, чтобы дети поняли, что половина десяти равна пяти и т.д. Ушинский говорил, что надо просто «приучить дитя распоряжаться с десятком совершенно свободно — и делить, и умножать, и дробить… «.
В истории педагогики достаточно широкое применение получила система математического развития детей М.Монтессори. Суть её в том, что когда трёхлетние дети приходят в школу, они уже умеют считать до двух или трёх. Потом они легко научаются нумерации. Одним из способов обучения нумерации М.Монтессори использовала монеты. «…Размен денег представляет первую форму нумерации, довольно интересную для возбуждения живого внимания ребёнка …». Далее она обучает с помощью методических упражнений, применяя, как дидактический материал одну из систем, уже использованную в воспитании чувств, то есть серию из десяти брусков различной длины. Когда дети разложат бруски один за другим по их длине, им предлагают считать красные и синие отметки. Теперь к упражнениям чувств для распознавания более длинных и более коротких брусков присоединяются упражнения в счёте. Так происходило обучение математическим представлениям в «Доме ребёнка» М.Монтессори.
Из множества различных взглядов на возникновение у детей понятия о числе можно обозначить три наиболее характерных.
Немецкий педагог В.А.Лай утверждает, что понятие числа возникает у детей путём непосредственного восприятия, т. е. если ребёнку дать несколько предметов (от 10 до 12), расположенных правильными фигурами, то он может узнать число этих предметов сразу, не считая их. И сообразно с этим, сторонники непосредственного восприятия чисел первоначальное обучение арифметике обосновывают на так называемых числовых фигурах, т.е. на группе одинаковых значков или тел, расположенных в определённом порядке. Другой взгляд о том, что числовое понятие возникает только посредством счёта. Третий, что «понятие числа психологически получается, как результат измерений. И сообразно с этим в начале обучения на первое место выдвигается изучение количественной изменяемости величин и их функциональной зависимости».
Нам думается, что в каждом из этих мнений есть доля истины. Совершенно верно, что понятие о числе может возникнуть путём непосредственного восприятия. Точно также справедливо, что представление числа может возникать путём счёта.
Известный психолог Прейнер в одном из своих исследований говорит, что «имея перед глазами группу предметов в числе трёх, мы можем непосредственно узнать это число не производя счёта, и называет такой процесс условным выражением» бессознательный счёт». Если же число предметов, находящееся перед глазами, превосходит этот ограниченный предел и если предметы размещены в ряд, то такое узнавание-схватывание числа их становится затруднительным и даже невозможным, вследствие чего мы ощущаем непреоборимую потребность прибегнуть к счёту».
Счёт необходим как один из процессов изучения чисел. Это видно из того, что его не отвергают, и сторонники непосредственного восприятия чисел.
Сказанное даёт нам основание полагать, что оба метода должны целесообразно дополнять друг друга. В пользу нашего мнения говорит и то психическое явление, что непосредственное восприятие числа опирается преимущественно на пространственные элементы, а счёт — на временные элементы числа и действий над числами.
Что касается взгляда на число как результат измерения, то это тоже правильный взгляд, но он не исключает собою понятия о числе, как результате счёта, а лишь расширяет и углубляет понятие числа. Но как более трудный вид для понимания детей, чем предыдущий, он должен не предшествовать ему, а следовать за ним.
Вопрос о числовых фигурах считается одним из спорных вопросов в методике арифметики.
Больше всего этот вопрос, как большинство методических вопросов, обсуждался в немецкой литературе — родине числовых фигур. По их мнению, числовые фигуры могут иметь четыре различных назначения. Одно из них то, что числовые фигуры способствуют возникновению у детей числовых представлений. Второе по важности назначение числовых фигур — это облегчение производства действий над однозначными числами. Третье назначение числовых фигур заключается в том, что они могут служить предметом для счёта. Четвёртое назначение — они могут облегчать переход от числа к цифре, ибо числовая фигура, подобно цифре, является знаком для числа, явно показывающим число единиц в данном числе.
Картинки должны быть одним из наглядных пособий, хотя и важным, но не главным при обучении арифметике. Главным наглядным пособием должны быть действительные, вещественные предметы, ибо они, как подлежащие осязанию, а не указыванию только как картинки, могут быть действительно отнимаемы и прибавляемы по одному и по группам, чего нельзя сказать про картинки, где подобные действия можно производить только мысленно, в воображении.
Почему необходимо знакомить детей с сравнением величины предметов? Существует мнение, что дети приходят в школу с готовыми понятиями о величине предметов. На практике получается совсем другая картина. Прежде чем научить детей сравнивать величину предметов, их надо научить эти предметы видеть и рассматривать.
Л.В.Глаголева использовала разные методы при обучении сравнению величин предметов, а именно — лабораторный, иллюстрированный, исследовательский, наглядный методы и игру, как метод обучения сравнению величин.
Ф.Н.Блехер предложила общие пути работы по формированию математических представлений (4, 6, 15). Она выделила два основных пути в работе с детьми:
- 1. Использование всех многочисленных поводов, которые в изобилии доставляет повседневная жизнь детей в коллективе и различные виды детской деятельности.
- 2. Путь, тесно связанный с первым- игры и занятия со специальным заданием по счёту.
Если в первом случае усвоение счёта происходит попутно, то во втором- работа по счёту носит самостоятельный характер. В работе с детьми указанные пути перекрещиваются и применяются в каждой возрастной группе детского сада.
Так же Ф.Н.Блехер разработала основной дидактический материал, необходимый на занятиях по формированию элементарных математических представлений для всех возрастных групп.
Таким образом, на основе изученного материала, можно сделать вывод, что наука по проблеме формирования математических представлений у детей имела довольно долгий путь развития, а именно:
I этап- историческое развитие:
- — выдвижение и обоснование идей математического развития передовыми отечественными и зарубежными педагогами (К.Д.Ушинский, В.АЛай и другие);
- — представление классической системы сенсорного воспитания (М.Монтессори, Ф.Фребель);
- — влияние методов обучения математике в школе (монографический и вычислительный методы) на становление методики математического развития дошкольников (Л.Волковский);
- — математическое развитие дошкольников средствами весёлой занимательной математики (вторая половина XVIII-ХIХ вв.)
Монографический метод-это метод, по которому изучали числа с помощью графических изображений, т.е. метод целостного восприятия чисел. Д.Л.Волковский «Детский мир в числах, включил систему освоения чисел на основе монографического метода.
Вычислительный метод возник как противоположность монографическому. Его сущность основана на идее освоения со считывания (аналитического восприятия множества), обучении сущности арифметических действий на наглядных материалах.
II этап- становления методики математического развития дошкольников (с 20-30 гг. до середины 60 г.);
- — определение содержания методов и приёмов работы с детьми, определение дидактических материалов и игр в зависимости от педагогических взглядов и идей;
- — естественное математическое развитие ребёнка в детском саду и семье, по методу Е.И.Тихеевой. Создание развивающей среды, как условие полноценного математического развития;
- — разработка разнообразных методов Л.В.Глаголевой при обучении сравнению величин.
- — разработка дидактических игр, игровых занимательных упражнений, как основной путь математического развития детей по методике Ф.Н.Блехер.
III этап- научно-обоснованная дидактическая система формирования элементарных математических представлений, разработанная А.МЛеушиной (50-60 годы);
- — теоретическая и методическая Концепция формирования количественных представлений в дошкольном возрасте, определение объёма знаний и умений в области познания множеств и чисел с детьми 2-7 лет;
- — занятия, как ведущая форма организации работы педагога с детьми;
- — повседневная жизнь — детей- это источник формирования элементарных представлений;
- — место и роль игр в формировании математических представлений и развитии личности ребёнка;
- — дидактический материал, как одно из средств формирования математических представлений.
Л.А.Венгер, О.М.Дьяченко предлагают осуществлять математическое развитие на занятиях и закреплять в разных видах детской деятельности, в том числе, в игре.
В процессе игр закрепляются количественные отношения (много, мало, больше, столько же), умение различать геометрические фигуры, ориентироваться в пространстве и времени.
Особое внимание уделяется формированию умения группировать предметы по признакам (свойствам), сначала по одному, а затем по двум (форма и размер).
Игры должны быть направлены на развитие логического мышления, а именно на умение устанавливать простейшие закономерности: порядок чередования фигур по цвету, форме, размеру. Этому способствуют и игровые упражнения на нахождение пропущенной в ряду фигуры.
Источник
Математическое развитие дошкольников.
Роль математики в современной науке постоянно возрастает. На сегодняшний день неоспоримым фактом является то, что математика нужна для интеллектуального развития личности.
Дошкольное образование — первое и самое ответственное звено в общей системе образования. В дошкольном возрасте закладывается фундамент представлений и понятий, который обеспечивает успешное умственное развитие ребенка. И родители, и педагоги знают, что математика — это мощный фактор интеллектуального развития ребенка, формирования его познавательных и творческих способностей. Известно и то, что от эффективности математического развития ребенка в дошкольном возрасте зависит успешность обучения математике в начальной школе.
Основа трактовки понятия «математическое развитие» дошкольников была заложена и в работах Венгера Л.А. и на сегодня является наиболее распространенной в теории и практике обучения математике дошкольников. «Целью обучения на занятиях в детском саду является усвоение ребенком определенного заданного программой круга знаний и умений. Развитие умственных способностей при этом достигается косвенным путем: в процессе усвоения знаний. Именно в этом и заключается смысл широко распространенного понятия «развивающее обучение». Развивающий эффект обучения зависит от того, какие знания сообщаются детям и какие методы обучения применяются».
Из исследования Е.И.Щербаковой под математическим развитием дошкольников нужно понимать сдвиги и изменения в познавательной деятельности личности, которые происходят в результате формирования элементарных математических представлений и связанных с ними логических операций. Иными словами, математическое развитие дошкольников — это качественные изменения в формах их познавательной активности, которые происходят в результате овладения детьми элементарными математическими представлениями и связанными с ними логическими операциями.
Среди задач по формированию элементарных математических знаний и последующего математического развития детей следует выделить главные, а именно:
-приобретение знаний о множестве, числе, величине, форме, пространстве и времени как основах математического развития;
-формирование широкой начальной ориентации в количественных, пространственных и временных отношениях окружающей действительности;
-формирование навыков и умений в счете, вычислениях, измерении, моделировании, общеучебных умений;
-овладение математической терминологией;
-развитие познавательных интересов и способностей, логического мышления, общее интеллектуальное развитие ребенка.
Эти задачи чаще всего решаются воспитателем одновременно на каждом занятии по математике, а также в процессе организации разных видов самостоятельной детской деятельности.
На занятиях по математике в детском саду формируются простейшие виды практической и умственной деятельности детей. Под видами деятельности — в этом случае способами обследования, счета, измерения — понимают объективные последовательные действия, которые должен выполнять ребенок для усвоения знаний: поэлементное сравнение двух множеств, накладывание меры и др. Овладевая этими действиями, ребенок усваивает цель и способы деятельности, а также правила, обеспечивающие формирование знаний.
Центральной задачей математического развития детей в детском саду является обучение счету. Основными способами при этом являются накладывание и прикладывание, овладение которыми предвосхищает обучение счету с помощью слов-числительных.
Одновременно дошкольников учат сравнивать предметы по величине (размеру) и результаты сравнения обозначать соответствующими словами-понятиями («больше — меньше», «узкий — широкий» и др.), строить ряды предметов по их размеру в порядке возрастания или уменьшения (большой, маленький, еще меньше, самый маленький). Однако, для того чтобы ребенок усвоил эти понятая, необходимо сформировать у него конкретные представления, научить его сравнивать предметы между собой сначала непосредственно — накладыванием, а потом опосредованно — с помощью измерения.
На основе практических действий у детей формируются такие мыслительные операции, как анализ, синтез, сравнение, обобщение. Воспитатель должен ориентироваться в оценке результатов своей работы прежде всего на эти показатели, на то, как дети умеют сравнивать, анализировать, обобщать, делать выводы. Уровень овладения детьми умственными операциями зависит от использования специальных методических приемов, которые позволяют детям упражняться в сравнении, обобщении. Так, дети учатся сравнивать множества по количеству, осуществляя при этом структурный и количественный анализ множества. Сравнивая предметы по форме, дети выделяют размер отдельных элементов, сопоставляя их между собою.
Математическое развитие ребенка не сводится только к тому, чтобы научить считать, измерять и решать арифметические задачи. Оно подразумевает еще и развитие способность видеть, открывать в окружающем мире свойства, отношения, зависимости, уметь их передавать с помощью знаков, символов.
Формирование начальных математических понятий и действий проходит те же этапы, что и всякое умственное действие. На первом этапе ребенок осуществляет счетные операции лишь с опорой на внешние предметы. На втором этапе математические действия осуществляются в плане громкой речи. Этот этап делится на две стадии. На первой ребенок не может выполнить задание «2 + 2», но легко выполнит «к 2 яблокам прибавить 2 яблока». Таким образом, на первой стадии опора на зрительный образ ситуации является необходимым условием выполнения математического действия. Вторая стадия определяется как стадия абстрактной речи, когда ребенок выполняет действия на основе только называния числительных. На третьем этапе математические действия осуществляются в плане внутренней речи (П. Я. Гальперин, Л. С. Георгиев).
В осуществлении познавательной деятельности (а математическая деятельность — это специфическая познавательная деятельность) ведущая роль принадлежит речи. Выполняя практическое действие, ребенок должен суметь оречевить это действие. На способности описать свое действие формируется умение рассуждать, обосновывать то или иное решение. В математике при описании свойств предметов и их отношений требуются точные слова — термины. Используемые на занятиях по математике обороты отличаются строго заданным порядком сочетаний слов. Для успешного усвоения счетных операций прежде всего необходимо овладеть определенным лингвистическим уровнем. Чтобы воспринимать определения, ребенок должен овладеть необходимым запасом слов, понять их значение, точно определить характер логико-грамматических связей между словами и предложениями. Сформированность лексико-грамматического строя речи является чрезвычайно важной при решении арифметических задач. Анализируя текст задачи, ребенок должен установить зависимости между данными задачи, выделить их логические связи.
Таким образом, необходимым условием успешного овладения математикой является сформированность многих психических функций и процессов. И, несомненно, одной из важнейших предпосылок овладения счетными операциями служит речь.
В процессе работы по активизации речевой деятельности на занятиях по ФЭМП решаются следующие задачи:
1. Формирование прочных знаний по всем разделам элементарной математики (количество и счет, форма и величина, ориентировка в пространстве и на плоскости, ориентировка во времени) в соответствии с программой.
2. Обогащение и активизация словарного запаса детей, используя в работе разнообразный речевой материал, фольклор.
Для формирование словарного запаса целесообразно использовать наглядный и речевой материал: веселые стихи о цифрах; сказки, рассказы, в которых присутствуют цифры; загадки; ребусы; считалочки; поговорки; дразнилки и т.п. Все это обогащает словарный (в том числе математический) запас, тренирует внимание, память, закладывает основы творчества, развивает объяснительную и доказательную речь. Фольклор помогает создать эмоциональный настрой, активизировать умственную деятельность ребенка.
3. Обучение использованию в своей речи математических терминов в соответствии с программным материалом:
— названий геометрических фигур (круг, квадрат, треугольник, прямоугольник, четырехугольник, многоугольник, овал, ромб);
— элементов фигур (угол, сторона, вершина);
— вычислительных действий (прибавить, вычесть, получится, равно, количество, цифра, число и тд);
— сравнительных действий (больше, меньше, длиннее, короче, выше — ниже, уже — шире, толще — тоньше и др.);
— пространственных отношений (верх — низ, впереди — сзади, налево — направо, рядом — далеко и др.);
4. Активизирование умственной деятельности детей.
5. Развитие внимания, памяти, воображения, мышления.
Работа по активизации речевой деятельности на занятиях по формированию элементарных математических представлений проводится поэтапно.
I. Начинается с обследовательских действий: ощупывание цифры, сделанной из пластмассы, фанеры, наждачной бумаги и др. материалов. В процессе этого вида деятельности дети учатся рассказывать о своих ощущениях, догадках, у них развиваются двигательная и зрительная память, мышление, внимание, речь.
II. Обводка цифры, штриховка, раскрашивание. Дети учатся согласовывать действия обеих рук, развивают глазомер, точность движений, аккуратность, в ходе выполнения задания уточняются знания детей о цвете, о расположении цифры на листе, умение ориентироваться на плоскости и т.д.
III. Составление цифры из кубиков «Цифры» и составление ее из частей (конструктор «Цифры») направлены на развитие аналитико-синтетической деятельности, внимания, памяти, развитие моторики, умения ориентироваться в пространстве.
IV. Для развития воображения проводится задание «На что похожа цифра?» Дети учатся сравнивать предметы, выделять признаки сходства и различия, в процессе проведения данного задания у детей развиваются творческие способности, фантазия и речь.
V. Рисование цифры мокрым пальчиком на доске, на песке. В данном задании закрепляется образ цифры, не только зрительно, но и моторно, дети учатся соотносить речевое обозначение цифры с ее графическим изображением.
VI. Чтение стихов про цифры, сказок, в которых есть упоминание о цифрах, скороговорок и тд. Это помогает детям увидеть необходимость знания цифр, их использование в художественном творчестве.
VII. Создание из детских рисунков коллажа математического содержания, по которому дети придумывают сказки и рассказы. В процессе этого вида работы развивается связная речь детей, обогащается и активизируется их словарный запас, формируется умение выступать перед слушателями, развивается выразительность речи.
VIII. Придумывание рассказов о цифрах от первого лица, например: «Я единица. У меня острый нос. Я очень любопытная, везде его сую, поэтому он и стал у меня такой длинный. Ко мне не подходи, а то уколю». Такие рассказы записываются в «Книжку-малышку», которая есть у каждого ребенка в группе
По такому же принципу строится последовательность работы по знакомству с геометрическими фигурами.
В работе по активизации речевой деятельности детей на занятиях по ФЭМП целесообразно использовать блоки Дьенеша, палочки Кюизенера, дидактические пособия М. Монтессори, Ж. Пиаже, М. Фидлер и др. В процессе работы с пособиями дети учатся оречевлять свои действия, используя математические термины, сравнивать объекты по цвету, величине, количеству, форме. Создавая образы птиц, животных («Танграм»), дети вспоминают песни, стихи, рассказы, придумывают загадки.
Как правило, учебные задачи на занятиях решаются в сочетании с воспитательными. Так, воспитатель учит детей быть организованными, самостоятельными, внимательно слушать, выполнять работу качественно и в срок. Это дисциплинирует детей, способствует формированию у них целенаправленности, организованности, ответственности. Таким образом, обучение детей математике с раннего возраста обеспечивает их всестороннее развитие.
Источник